XMLmind XML Editor - Support of RELAX NG
Schemas

Hussein Shafie, XMLmind Software <xn edi t or - support @m ni nd. con»
July 8, 2025

Abstract

This document describes how RELAX NG schemas are supported by XMLmind XML Editor.

Table of Contents

1. Implementation of RELAX NG in XMLmind XML Editorcccuviiviieeiiiieieeeeeiieeeeeen 1
2. Specifying which RELAX NG schemato use for validating adocumentcccccceveeeeeniinnnee. 2
2.1. Therel axng configuration El@mMENtooiiiiiiiiiiii e 2
2.2. The <?xm - model > ProcessiNg iNSEIUCLIONoiieiiiiiiiiieiee e e e e e e e e e e e e 2
3. XMLmind XML Editor-friendly content Mmodels ... 3
3.1. Other content models which are not XXE-friendlycccoeeeiiiiiiiie e 6
4. KNOWN PrODIBIMS ...ttt e e e e sttt e e e e e e s e e nt e e e e e e e e eeaansneneeeeaeeesaannnenees 8

1. Implementation of RELAX NG in XMLmind XML Editor

The implementation of RELAX NG in XMLmind XML Editor (XXE for short) is based on Jing, an
OpenSource, industrial strength, streaming validator written by James Clark.

The trimmed version of Jing included in XXE (r el axng. j ar) isused

 toload andvalidate RELAX NG schemasassociated to XML documents (XML and compact syntaxes
are both supported);

« to fully validate XML documents conforming to RELAX NG schemas, each time these documents
are opened and saved, and each time a full validation is explicitly requested by the user (command
Tools — Check Validity).

Jing is not used to implement guided editing. That is, Jing is not used to determine the content model
of the element being edited. A quick, incremental, version of the algorithm that computes the derivative
of a pattern is used for that.

The implementation of W3C XML Schema Datatypes used in RELAX NG schemas (e.g. xsd: i nt) is
the work of XMLmind. Thisimplementation is very different from the implementation of W3C XML
Schema Datatypes included in the origina Jing. This implementation is shared by the version of Jing
included in XXE and by our own W3C XML Schema validator.

XXE supports attribute default values as specified in RELAX NG DTD Compatibility. The compatibility
of the schema with this feature is (very strictly) checked by XXE and not by Jing. This means that a
schemafound valid by Jing but improperly using this feature will be rejected by XXE.

http://www.relaxng.org/
http://www.relaxng.org/
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/xmlschema-2/
http://www.relaxng.org/compatibility-20011203.html

XMLmind XML Editor - Support of RE-
LAX NG Schemas

2. Specifying which RELAX NG schema to use for validating a doc-
ument

2.1. The rel axng configuration element

Thissectionisjust aprimer. The reference documentation about thistopicisreally Section 25, “relaxng”
in XMLmind XML Editor - Configuration and Deployment.

A document type declaration (<! DOCTYPE>) can be used to associate a DTD to a document. Attributes
xsi : schemalLocat i on/xsi : noNamespaceSchemalLocation can be used to associate W3C XML
Schemasto adocument. But there is no standard way to associate a RELAX NG schemato adocument.
Therefore this association must be made using an external specification such as the Namespace Routing
Language (NRL).

Inthe case of XMLmind XML Editor, thisexternal specificationissimply aconfiguration element called
rel axng.

XHTML example:

<configuration nane="XHTM. Strict [RELAX NG"
xm ns: htm ="http://ww.w3. org/ 1999/ xht m "
xm ns="http://ww. xm nmi nd. com xm edi t or/ schema/ confi gurati on">
<i ncl ude | ocati on="xxe-config: schema/ns_xhtm .incl" />

<det ect >
<r oot El ement Namespace>htt p://ww. wW3. or g/ 1999/ xht m </ r oot El ement Nanespace>
</ det ect >

<rel axng | ocati on="xxe-confi g: common/rng/ xht m 1/ xhtm -strict.rng" />@

<preserveSpace el enments="htm :pre htm :style htm:script" />0

<css nane="XHTM." | ocati on="xhtm _rng.css" />
<t enpl at e name="Page" | ocati on="page. htm" />
</ configuration>

©® Ther el axng configuration element specifiesthelocation of the RELAX NG schema (XML syntax
or compact syntax) to which conforms the document being opened.

® Unlike the DTD, xhtm -strict.rng does not specify a preserve default value for attribute
xm : space of elements such as pr e. Therefore, the pr eser veSpace configuration element must
be used to specify whitespace-preserving elements. More information in configurefpreserveSpace
in XMLmind XML Editor - Configuration and Deployment.

2.2.The <?xn - nodel > processing instruction

The <?xni - nodel > processing instruction allows to associate schema documents written in any schema
definition language with a given XML document. As such, it may be used to associate a RELAX NG
schema, written using either the XML or the compact syntax, with adocument. Example (excerpts from
name.xml):

../configure/configure.pdf#relaxng
http://www.thaiopensource.com/relaxng/nrl.html
http://www.thaiopensource.com/relaxng/nrl.html
../configure/configure.pdf#preserveSpace
http://www.w3.org/TR/xml-model/
samples/name.xml

XMLmind XML Editor - Support of RE-
LAX NG Schemas

<?xm version="1.0"?>
<?xm - model href="nane.rnc" type="application/rel ax-ng-conpact -synt ax" ?>
<nanes>

<nanme><f ul | Name>John Smi t h</f ul | Name></ nane>

3. XMLmind XML Editor-friendly content models

Validating a document against a RELAX NG schemais similar to matching some text against aregular
expression. If the document ~“matches' the schema, the document is valid, and this, no matter which
sub-expressions were used during the match.

Example: string "b" matches regular expression "(a?, b) | (b, ¢?) " and we don't care if it matches sub-
expression "(a?, b) " or sub-expression "(b, ¢?)". The situation is exactly the same with RELAX NG
schemas, simply replace the characters and the character classesused in aregular expression by RELAX
NG patterns.

Thejob of aRELAX NG schemaisavalidate adocument asawhole, and that'sit. For X XE, the problem
to solveis different. One of the main jobs of XXE isto guide the user when she/he edits an XML docu-
ment. That is, one of the main jobs of X XE isto identify the content model of the element whichisbeing
edited, in order to suggest the right attributes and the right child elementsfor it.

To do that, X XE needs to know precisely which *"sub-expressions were used during the match". Unfor-
tunately, sometimes, thisisimpossibleto do.

All examples used in this section are found in xxe_i nstal | _di r/ doc/ r ngsuppor t/ sanpl es/ . Note that
they are all valid schemas and valid documents.

Example 1. Ambiguous elements

RELAX NG schema, target.rnc:
start = buil d-el enent

bui |l d-el enent = el enment build {
target-el enent*

}

target-el enent = el enment target ({
attribute nane { xsd: 1D},
elenent list { ref-element* }?
element list { action-elenment* }?

}

ref-elenent = el enent ref {
attribute nanme { xsd:|DREF }

}

action-el enent = elenent action { text }
Document conforming to the above schema, target_bad.xml:
<bui | d>

<target name="all">
<list>

samples/target.rnc
samples/target_bad.xml

XMLmind XML Editor - Support of RE-
LAX NG Schemas

</list>
</target>

<t arget name="conpile"/>
<target name="link"/>
</ bui | d>

If you opentarget _bad. xml in XXE and select thel i st element, XXE randomly chooses one of the
two 1 i st content models. Thisis correct because both I i st content models are fine in the case of an
empty |i st element. However there is a drawback: if XXE chooses the kind of Ii st which contain
act i on child elements, you'll have no way to insert r ef child elementsin an empty list. In other words,
one content model hides the other one.

Now, if you open target_good.xml in XXE, there is no problem at al:

<bui | d>
<target nanme="all">
<list>
<ref nane="conpile"/>
<ref nane="link"/>
</list>
<list>

<action>cc -c *.c</action>
<action>cc *.o</action>
</list>
</target>

<target name="conpile"/>
<target name="link"/>

</ bui | d>

However, in the vast majority of realistic cases, XXE knows how to make a difference between two
child elements having the same name and having different content models.

RELAX NG schema, sect.rnc:
start = doc-el enent
doc-el ement = el ement doc {

(sinpl e-sect |
recursive-sect)+

si npl e-sect = el enment sect {
attribute class {"sinple"}, paragraph-el enent*

recursive-sect = el enent sect {
attribute class {"recursive"}?, (recursive-sect|sinple-sect)*

par agr aph- el ement = el enent paragraph { text }

samples/target_good.xml
samples/sect.rnc

XMLmind XML Editor - Support of RE-
LAX NG Schemas

Document conforming to the above schema, sect.xml:

<doc>
<sect >
<sect ></ sect >

<sect class="sinple">
<par agr aph>Par agr aph 2. </ par agr aph>
</ sect >
</ sect >

<sect class="sinpl e"></sect>
</ doc>

In the above example, X XE hasno problem at all making adifference between the empty <sect > element
andtheempty <sect cl ass="si npl e" > element. Thereason is obviously becausethefirst kind of sect
element has arequired attribute cl ass with si npl e asitsfixed value.

Help provided by the "Show Content Model" window

When you ask yourself “what is the content model of the (explicitly or implicitly) selected
element?’, simply select menu item Help —» Show Content model (keyboard shortcut:
Shift+F1) and you'll have your answer.

samples/sect.xml

XMLmind XML Editor - Support of RE-
LAX NG Schemas

Figure 1. sect . xm example when first sect element is selected

Element sect#2

Content model

(Aclass? ,
(sect#2 | sect)™)

Using these attributes ar child elements
may cause the content model of this
element to become ambiguous.

This element can anly contain child elements.

enumeration: "recursive"

Attributes
|Name | Data type | Value
class |[token FIXED "recursive"

Parents

Children

The following elements contain sect#2: coc, sect#2.

The following elements occur in sect#2: sect, sect#2.

3.1. Other content models which are not XXE-friendly

Example 2. Not specific to RELAX NG

RELAX NG schema, name.rnc:
start = nanes-el enent

nanes- el ement = el ement nanes {
name- el enent +
}
nane- el ement = el enent nane {
el ement full Name { text } |
(element firstNane { text } & el enent

| ast Name { text })

Document conforming to the above schema, name.xml:

samples/name.rnc
samples/name.xml

XMLmind XML Editor - Support of RE-
LAX NG Schemas

<nanes>
<nanme><ful | Nane>John Snit h</ful | Nanme></ nane>

<nane><first Nane>John</first Nanme><| ast Name>Smi t h</ | ast Nane></ nane>

<name><| ast Name>Sni t h</ | ast Name><fi r st Nane>John</ f i r st Nane></ name>
</ nanmes>

XXE adlowstoreplacethefir st Nane, | ast Nane pair by af ul | Narme. Simply select both child elements
and use command Edit — Replace. Butitisimpossibletoreplaceaf ul | Name by af i r st Nare, | ast Name
pair.

Theonly way to dothisisto select thef ul | Nane to be replaced and then, to use command Edit — Force
Deletion. Thiswill force XXE to enter the so-called “lenient” editi ng mode. Suffice to remember that
in this mode, the user is not guided. The user may add or remove any child elements she/he wants, in-
cluding afirst Name, | ast Nare pair®.

Note that the above example is not specific to RELAX NG. It is possible to model thiskind of content
withaDTD or aW3C XML Schema.

The example below is very similar but can only be expressed using a RELAX NG schema. Thisisthe
case, because, unlike aDTD and aW3C XML Schema, a RELAX NG schema can be used to specify
the places within an element where text nodes may occur.

Example 3. Specific to RELAX NG
RELAX NG schema, name2.rnc:

start = nanes-el enent

nanes- el ement = el emrent nanes {
nane- el ement +

}
nane- el enent = el enent nane {

text |

(element firstNane { text } & elenent |astName { text })
}

Document conforming to the above schema, name2.xml:

<nanes>
<nane>John Sm t h</ nane>

<nanme><first Nane>John</first Nane><| ast Nane>Sm t h</ | ast Nane></ nanme>

<nanme><| ast Nane>Smi t h</ | ast Nanme><f i r st Nane>John</ f i r st Nane></ nane>
</ nanmes>

1This menu item is available only after you check "Enable the 'Edit|Force Deletion’ menu item” in Options — Preferences,
General |Features section.

’The right approach here is to define two named element templates for element nane, one containing af ul | Nare child element
and the other containing af i r st Nane, | ast Name pair.

samples/name2.rnc
samples/name2.xml

XMLmind XML Editor - Support of RE-
LAX NG Schemas

The situation isworse with the name2.rnc exampl e than with the name.rnc example. It isalwaysallowed
to delete atext node and this includes the text node containing "John Sni t h". That is, there is no way
to force XXE to enter its“lenient” editing mode in order to be able to replace text node "John Smith"
by afirst Nane, | ast Nane pair.

In such case, using named element templatesis the only way to cope with such content models. Simply
specify two named element templates for element nane, one containing a text node with a placeholder
string and the other containing af i r st Name, | ast Nane pair.

4. Known problems
Known problems:

* incl ude and ext er nal Ref elementsin RELAX NG schemas are XML catalog aware, but the equi-
valent notations in the compact syntax are not XML catalog aware.

samples/name2.rnc
samples/name.rnc

	XMLmind XML Editor - Support of RELAX NG Schemas
	Table of Contents
	1. Implementation of RELAX NG in XMLmind XML Editor
	2. Specifying which RELAX NG schema to use for validating a document
	2.1. The relaxng configuration element
	2.2. The <?xml-model> processing instruction

	3. XMLmind XML Editor-friendly content models
	3.1. Other content models which are not XXE-friendly

	4. Known problems

