
XMLmind XML Editor - Support of RELAX NG
Schemas

Hussein Shafie, XMLmind Software <xmleditor-support@xmlmind.com>
July 8, 2025

Abstract

This document describes how RELAX NG schemas are supported by XMLmind XML Editor.

Table of Contents
1. Implementation of RELAX NG in XMLmind XML Editor .. 1
2. Specifying which RELAX NG schema to use for validating a document 2

2.1. The relaxng configuration element ... 2
2.2. The <?xml-model> processing instruction .. 2

3. XMLmind XML Editor-friendly content models .. 3
3.1. Other content models which are not XXE-friendly .. 6

4. Known problems ... 8

1. Implementation of RELAX NG in XMLmind XML Editor

The implementation of RELAX NG in XMLmind XML Editor (XXE for short) is based on Jing, an
OpenSource, industrial strength, streaming validator written by James Clark.

The trimmed version of Jing included in XXE (relaxng.jar) is used

• to load and validate RELAX NG schemas associated to XML documents (XML and compact syntaxes
are both supported);

• to fully validate XML documents conforming to RELAX NG schemas, each time these documents
are opened and saved, and each time a full validation is explicitly requested by the user (command
Tools → Check Validity).

Jing is not used to implement guided editing. That is, Jing is not used to determine the content model
of the element being edited. A quick, incremental, version of the algorithm that computes the derivative
of a pattern is used for that.

The implementation of W3C XML Schema Datatypes used in RELAX NG schemas (e.g. xsd:int) is
the work of XMLmind. This implementation is very different from the implementation of W3C XML
Schema Datatypes included in the original Jing. This implementation is shared by the version of Jing
included in XXE and by our own W3C XML Schema validator.

XXE supports attribute default values as specified in RELAX NG DTD Compatibility. The compatibility
of the schema with this feature is (very strictly) checked by XXE and not by Jing. This means that a
schema found valid by Jing but improperly using this feature will be rejected by XXE.

1

http://www.relaxng.org/
http://www.relaxng.org/
http://www.thaiopensource.com/relaxng/jing.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.thaiopensource.com/relaxng/derivative.html
http://www.w3.org/TR/xmlschema-2/
http://www.relaxng.org/compatibility-20011203.html

2. Specifying which RELAX NG schema to use for validating a doc-
ument

2.1.The relaxng configuration element

This section is just a primer. The reference documentation about this topic is really Section 25, “relaxng”
in XMLmind XML Editor - Configuration and Deployment.

A document type declaration (<!DOCTYPE>) can be used to associate a DTD to a document. Attributes
xsi:schemaLocation/xsi:noNamespaceSchemaLocation can be used to associate W3C XML
Schemas to a document. But there is no standard way to associate a RELAX NG schema to a document.
Therefore this association must be made using an external specification such as the Namespace Routing
Language (NRL).

In the case of XMLmind XML Editor, this external specification is simply a configuration element called
relaxng.

XHTML example:

<configuration name="XHTML Strict [RELAX NG]"

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns="http://www.xmlmind.com/xmleditor/schema/configuration">

<include location="xxe-config:schema/ns_xhtml.incl" />

<detect>

<rootElementNamespace>http://www.w3.org/1999/xhtml</rootElementNamespace>

</detect>

<relaxng location="xxe-config:common/rng/xhtml1/xhtml-strict.rng" />

<preserveSpace elements="html:pre html:style html:script" />

<css name="XHTML" location="xhtml_rng.css" />

<template name="Page" location="page.html" />

</configuration>

The relaxng configuration element specifies the location of the RELAX NG schema (XML syntax
or compact syntax) to which conforms the document being opened.

Unlike the DTD, xhtml-strict.rng does not specify a preserve default value for attribute
xml:space of elements such as pre. Therefore, the preserveSpace configuration element must
be used to specify whitespace-preserving elements. More information in configure#preserveSpace
in XMLmind XML Editor - Configuration and Deployment.

2.2.The <?xml-model> processing instruction

The <?xml-model> processing instruction allows to associate schema documents written in any schema
definition language with a given XML document. As such, it may be used to associate a RELAX NG
schema, written using either the XML or the compact syntax, with a document. Example (excerpts from
name.xml):

2

XMLmind XML Editor - Support of RE-
LAX NG Schemas

../configure/configure.pdf#relaxng
http://www.thaiopensource.com/relaxng/nrl.html
http://www.thaiopensource.com/relaxng/nrl.html
../configure/configure.pdf#preserveSpace
http://www.w3.org/TR/xml-model/
samples/name.xml

<?xml version="1.0"?>

<?xml-model href="name.rnc" type="application/relax-ng-compact-syntax"?>

<names>

<name><fullName>John Smith</fullName></name>

 ...

3. XMLmind XML Editor-friendly content models

Validating a document against a RELAX NG schema is similar to matching some text against a regular
expression. If the document ``matches'' the schema, the document is valid, and this, no matter which
sub-expressions were used during the match.

Example: string "b" matches regular expression "(a?,b)|(b,c?)" and we don't care if it matches sub-
expression "(a?,b)" or sub-expression "(b,c?)". The situation is exactly the same with RELAX NG
schemas, simply replace the characters and the character classes used in a regular expression by RELAX
NG patterns.

The job of a RELAX NG schema is a validate a document as a whole, and that's it. For XXE, the problem
to solve is different. One of the main jobs of XXE is to guide the user when she/he edits an XML docu-
ment. That is, one of the main jobs of XXE is to identify the content model of the element which is being
edited, in order to suggest the right attributes and the right child elements for it.

To do that, XXE needs to know precisely which ``sub-expressions were used during the match''. Unfor-
tunately, sometimes, this is impossible to do.

All examples used in this section are found in XXE_install_dir/doc/rngsupport/samples/. Note that
they are all valid schemas and valid documents.

Example 1. Ambiguous elements

RELAX NG schema, target.rnc:

start = build-element

build-element = element build {

 target-element*

}

target-element = element target {

 attribute name { xsd:ID },

 element list { ref-element* }?,

 element list { action-element* }?

}

ref-element = element ref {

 attribute name { xsd:IDREF }

}

action-element = element action { text }

Document conforming to the above schema, target_bad.xml:

<build>

<target name="all">

<list>

3

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/target.rnc
samples/target_bad.xml

</list>

</target>

<target name="compile"/>

<target name="link"/>

</build>

If you open target_bad.xml in XXE and select the list element, XXE randomly chooses one of the
two list content models. This is correct because both list content models are fine in the case of an
empty list element. However there is a drawback: if XXE chooses the kind of list which contain
action child elements, you'll have no way to insert ref child elements in an empty list. In other words,
one content model hides the other one.

Now, if you open target_good.xml in XXE, there is no problem at all:

<build>

<target name="all">

<list>

<ref name="compile"/>

<ref name="link"/>

</list>

<list>

<action>cc -c *.c</action>

<action>cc *.o</action>

</list>

</target>

<target name="compile"/>

<target name="link"/>

</build>

However, in the vast majority of realistic cases, XXE knows how to make a difference between two
child elements having the same name and having different content models.

RELAX NG schema, sect.rnc:

start = doc-element

doc-element = element doc {

 (simple-sect|

 recursive-sect)+

}

simple-sect = element sect {

 attribute class {"simple"}, paragraph-element*

}

recursive-sect = element sect {

 attribute class {"recursive"}?, (recursive-sect|simple-sect)*

}

paragraph-element = element paragraph { text }

4

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/target_good.xml
samples/sect.rnc

Document conforming to the above schema, sect.xml:

<doc>

<sect>

<sect></sect>

<sect class="simple">

<paragraph>Paragraph 2.</paragraph>

</sect>

</sect>

<sect class="simple"></sect>

</doc>

In the above example, XXE has no problem at all making a difference between the empty <sect> element
and the empty <sect class="simple"> element. The reason is obviously because the first kind of sect
element has a required attribute class with simple as its fixed value.

Help provided by the "Show Content Model" window

When you ask yourself “what is the content model of the (explicitly or implicitly) selected
element?”, simply select menu item Help → Show Content model (keyboard shortcut:
Shift+F1) and you'll have your answer.

5

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/sect.xml

Figure 1. Sect.xml example when first sect element is selected

3.1. Other content models which are not XXE-friendly

Example 2. Not specific to RELAX NG

RELAX NG schema, name.rnc:

start = names-element

names-element = element names {

 name-element+

}

name-element = element name {

 element fullName { text } |

 (element firstName { text } & element lastName { text })

}

Document conforming to the above schema, name.xml:

6

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/name.rnc
samples/name.xml

<names>

<name><fullName>John Smith</fullName></name>

<name><firstName>John</firstName><lastName>Smith</lastName></name>

<name><lastName>Smith</lastName><firstName>John</firstName></name>

</names>

XXE allows to replace the firstName, lastName pair by a fullName. Simply select both child elements
and use command Edit → Replace. But it is impossible to replace a fullName by a firstName, lastName
pair.

The only way to do this is to select the fullName to be replaced and then, to use command Edit → Force
Deletion1. This will force XXE to enter the so-called “lenient” editing mode. Suffice to remember that
in this mode, the user is not guided. The user may add or remove any child elements she/he wants, in-
cluding a firstName, lastName pair2.

Note that the above example is not specific to RELAX NG. It is possible to model this kind of content
with a DTD or a W3C XML Schema.

The example below is very similar but can only be expressed using a RELAX NG schema. This is the
case, because, unlike a DTD and a W3C XML Schema, a RELAX NG schema can be used to specify
the places within an element where text nodes may occur.

Example 3. Specific to RELAX NG

RELAX NG schema, name2.rnc:

start = names-element

names-element = element names {

 name-element+

}

name-element = element name {

 text |

 (element firstName { text } & element lastName { text })

}

Document conforming to the above schema, name2.xml:

<names>

<name>John Smith</name>

<name><firstName>John</firstName><lastName>Smith</lastName></name>

<name><lastName>Smith</lastName><firstName>John</firstName></name>

</names>

1This menu item is available only after you check "Enable the 'Edit|Force Deletion' menu item" in Options → Preferences,
General|Features section.
2The right approach here is to define two named element templates for element name, one containing a fullName child element
and the other containing a firstName, lastName pair.

7

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/name2.rnc
samples/name2.xml

The situation is worse with the name2.rnc example than with the name.rnc example. It is always allowed
to delete a text node and this includes the text node containing "John Smith". That is, there is no way
to force XXE to enter its “lenient” editing mode in order to be able to replace text node "John Smith"
by a firstName, lastName pair.

In such case, using named element templates is the only way to cope with such content models. Simply
specify two named element templates for element name, one containing a text node with a placeholder
string and the other containing a firstName, lastName pair.

4. Known problems

Known problems:

• include and externalRef elements in RELAX NG schemas are XML catalog aware, but the equi-
valent notations in the compact syntax are not XML catalog aware.

8

XMLmind XML Editor - Support of RE-
LAX NG Schemas

samples/name2.rnc
samples/name.rnc

	XMLmind XML Editor - Support of RELAX NG Schemas
	Table of Contents
	1. Implementation of RELAX NG in XMLmind XML Editor
	2. Specifying which RELAX NG schema to use for validating a document
	2.1. The relaxng configuration element
	2.2. The <?xml-model> processing instruction

	3. XMLmind XML Editor-friendly content models
	3.1. Other content models which are not XXE-friendly

	4. Known problems

